java并发编程-AQS介绍及源码详解

介绍

AQS 的全称为 AbstractQueuedSynchronizer ,就是抽象队列同步器。

从源码上可以看到AQS 就是一个抽象类,它继承了AbstractOwnableSynchronizer,实现了java.io.Serializable接口。

public abstract class AbstractQueuedSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable{}

它主要用来构建锁和同步器,为构建锁和同步器提供了一些通用功能的实现,因此,使用 AQS 能简单且高效地构造出应用广泛的大量同步器,比如 ReentrantLockSemaphore,ReentrantReadWriteLockSynchronousQueue等。

核心思想

AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是基于 CLH 锁 (Craig, Landin, and Hagersten locks) 实现的。

CLH 锁是对自旋锁的一种改进,是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系),暂时获取不到锁的线程将被加入到该队列中。AQS 将每条请求共享资源的线程封装成一个 CLH 队列锁的一个结点(Node)来实现锁的分配。在 CLH 队列锁中,一个节点表示一个线程,它保存着线程的引用(thread)、 当前节点在队列中的状态(waitStatus)、前驱节点(prev)、后继节点(next)。

从源码中可以看到Node具有以下几个属性:

        static final Node SHARED = new Node();
        static final Node EXCLUSIVE = null;
        static final int CANCELLED =  1;
        static final int SIGNAL    = -1;
        static final int CONDITION = -2;
        static final int PROPAGATE = -3;
        volatile int waitStatus;
        volatile Node prev;
        volatile Node next;
        volatile Thread thread;
        Node nextWaiter;

并且设置了一个 头节点和一个尾节点

    private transient volatile Node head;

    private transient volatile Node tail;

对应CLH队列的结构如下:

CLH的优点:

  1. 性能优异,获取和释放锁开销小。CLH 的锁状态不再是单一的原子变量,而是分散在每个节点的状态中,降低了自旋锁在竞争激烈时频繁同步的开销。在释放锁的开销也因为不需要使用 CAS 指令而降低了。

  2. 公平锁。先入队的线程会先得到锁。

  3. 实现简单,易于理解。

  4. 扩展性强。下面会提到 AQS 如何扩展 CLH 锁实现了 j.u.c 包下各类丰富的同步器。

CLH还有两个缺点

  1. 有自旋操作,当锁持有时间长时会带来较大的 CPU 开销。
  2. 基本的 CLH 锁功能单一,不改造不能支持复杂的功能。

针对 CLH 的缺点,AQS 对 CLH 队列锁进行了一定的改造。针对第一个缺点,AQS 将自旋操作改为阻塞线程操作。针对第二个缺点,AQS 对 CLH 锁进行改造和扩展

如何改造的这里不多做解释,想了解具体的信息,极力推荐大佬的一篇文章

Java AQS 核心数据结构-CLH 锁

回来继续来谈AQS

AQS中 使用 int类型变量 state 表示同步状态,通过内置的 FIFO 线程等待/等待队列 来完成获取资源线程的排队工作。state 变量由 volatile 修饰,用于展示当前临界资源的获锁情况。

状态信息 state 可以通过 protected 类型的getState()setState()compareAndSetState() 进行操作。并且,这几个方法都是 final 修饰的,在子类中无法被重写。

//返回同步状态的当前值
protected final int getState() {
     return state;
}
 // 设置同步状态的值
protected final void setState(int newState) {
     state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
      return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

state 变量可以被用来表达以下几种情况:

独占模式下的状态

当 state 为 0 时,表示同步器当前没有被任何线程所持有,可以被任意线程获取。

当 state 大于 0 时,表示有一个线程已经获取了同步器,并且可以是同一个线程多次获取,例如 ReentrantLock 中的重入

共享模式下的状态

对于共享模式,state 的含义取决于具体实现,例如在 CountDownLatch 中,state 表示还需要等待的线程数,而在 Semaphore 中,state 表示当前可用的许可数。

举个例子

以可重入的互斥锁 ReentrantLock 为例,它的内部维护了一个 state 变量,用来表示锁的占用状态。state 的初始值为 0,表示锁处于未锁定状态。当线程 A 调用 lock() 方法时,会尝试通过 tryAcquire() 方法独占该锁,并让 state 的值加 1。如果成功了,那么线程 A 就获取到了锁。如果失败了,那么线程 A 就会被加入到一个等待队列(CLH 队列)中,直到其他线程释放该锁。假设线程 A 获取锁成功了,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加)。这就是可重入性的体现:一个线程可以多次获取同一个锁而不会被阻塞。但是,这也意味着,一个线程必须释放与获取的次数相同的锁,才能让 state 的值回到 0,也就是让锁恢复到未锁定状态。只有这样,其他等待的线程才能有机会获取该锁。

源码解析

上面已经看到了aqs部分的源码,在这里再次详细解释一下

AQS 主要有三个属性,有两个Node节点,分别是 head表示待队列的头结点 ,tail表示等待队列的尾节点

还有个state示同步状态。

在node节点中有如下几个属性

        static final Node SHARED = new Node();
        static final Node EXCLUSIVE = null;
        static final int CANCELLED =  1;
        static final int SIGNAL    = -1;
        static final int CONDITION = -2;
        static final int PROPAGATE = -3;
        volatile int waitStatus;
        volatile Node prev;
        volatile Node next;
        volatile Thread thread;
        Node nextWaiter;

其中上面几个都是final修饰,是不可改变的。

下面的waitStatus可以取上面的几个值分别表示不同的涵义。

  1. 当waitStatus为0时,为node节点刚被创建时的初始值
  2. 为CANCELLED,也就是为1时,表示线程获取锁的请求已经取消了
  3. 为SIGNAL也就是-1时,表示此节点后面的节点被阻塞(park),避免竞争,资源浪费,此节点释放后通知后面的节点
  4. 为CONDITION也就是-2时,表示节点在等待队列中,等待被唤醒
  5. 为PROPAGATE也就是-3时,表示当前线程处于SHARED状态,表示锁的下一次获取可以无条件传播

lock方法

acquire()

上锁时主要就是在调用acquire方法,该方法中调用了很多其他的方法

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

首先会调用tryAcquire()尝试直接去获取资源,如果成功则直接返回

addWaiter()方法说将该线程加入等待队列的尾部,并标记为独占模式

acquireQueued()方法使线程阻塞在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。

然后我们依次来看一下这些方法

首先是tryAcquire()方法

tryAcquire()

protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
}

调用了另一个方法nonfairTryAcquire

final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
//再次尝试抢占锁
    if (c == 0) {
        if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
// 重入锁的情况
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
// false 表示抢占失败
    return false;
}

首先会先判断锁状态,如果未被持有,则尝试抢占,否则进行重入锁。

addWaiter()

private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
    return node;
}

首先会先按传参的模式来构建节点,然后直接插入到队列尾部,如果失败了就调用enq方法入队。

再来看enq方法

enq()

private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) { // Must initialize
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}

如果此时队列为空,则创建一个头节点,否则正常插入

acquireQueued()

经过上面的代码,如果可以运行到这里,那证明此时线程获取获取资源已经失败,进入了等待队列休息,然后在等待队列中就要等待被唤醒。

方法流程如下:

先标记了是否已经拿到了资源,标记等待中是否被打断过,随后进入自旋

自旋中先拿到前驱节点,如果前驱节点就是头节点,那证明自己有资格去竞争资源,获取中让head指向自己,然后标记成功获取资源并返回等待中是否被打断过。

如果前驱节点不是头节点,那就让自己休息进入等待状态。

最后如果等待过程中没有获取到资源则取消等待

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;、
    try {
        boolean interrupted = false;、
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                p.next = null; 
                failed = false; 
                return interrupted;
            }      
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed) 
            cancelAcquire(node);
    }
}

然后我们再来看shouldParkAfterFailedAcquire()方法和parkAndCheckInterrupt()方法

shouldParkAfterFailedAcquire()

首先拿到前驱节点的状态,如果此前已经获取过了前驱状态为SIGNAL,则自己进入休息即可。

如果前驱节点被放弃了那就一直向前寻找,直到找到正常的节点,找到了将其设为SIGNAL,后面通知自己,让自己休息。

因此,一个正常前驱状态为SIGNAL则自己就可以安心的休息,如果不是则一直向前寻找,直到找到正常的,让自己可以安心休息。

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;//拿到前驱的状态
    if (ws == Node.SIGNAL)
        return true;
    if (ws > 0) {
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}

parkAndCheckInterrupt()

这里面很简单,就是让线程去休息

 private final boolean parkAndCheckInterrupt() {
     LockSupport.park(this);//调用park()使线程进入waiting状态
     return Thread.interrupted();//如果被唤醒,查看自己是不是被中断的。
 }

截至到这里整个获取流程执行完毕。

unlock方法

看完获取锁,接着看解锁

解锁过程比较简单

首先时release方法

release()

它会释放指定量的资源,如果彻底释放了(即state=0),他会找到头节点,然后去唤醒等待队列中的下一个正在等待的线程。

public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}
tryRelease()

这个方法在尝试释放一定量的资源

首先让state减一,如果当前线程不是持有锁的线程则抛出异常

如果减完为0则表示已经释放了,最后更改掉state的值

protected final boolean tryRelease(int releases) {
    int c = getState() - releases;
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/588144.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

redis缓存详情

redis安装包及图形化软件: 百度链接&#xff1a;https://pan.baidu.com/s/1wljo7JzgrSQyqldv9d5HZA?pwdht1m 提取码&#xff1a;ht1m 目录 1.redis的下载及安装 1.1redis的启动与停止 1.2Redis服务启动与停止 2.redis数据类型及常用指令 2.1redis数据类型 2.2redis常用…

读天才与算法:人脑与AI的数学思维笔记15_声响的数学之旅

1. 音乐 1.1. 巴赫的作品以严格的对位著称&#xff0c;他十分中意对称的结构 1.2. 巴托克的作品很多都以黄金比例为结构基础&#xff0c;他非常喜欢并善于使用斐波纳契数列 1.3. 有时&#xff0c;作曲家是本能地或者不自知地被数学的模式和结构所吸引&#xff0c;而他们并没…

Golang | Leetcode Golang题解之第61题旋转链表

题目&#xff1a; 题解&#xff1a; func rotateRight(head *ListNode, k int) *ListNode {if k 0 || head nil || head.Next nil {return head}n : 1iter : headfor iter.Next ! nil {iter iter.Nextn}add : n - k%nif add n {return head}iter.Next headfor add > …

【项目构建】04:动态库与静态库制作

OVERVIEW 1.编译动态链接库&#xff08;1&#xff09;编译动态库&#xff08;2&#xff09;链接动态库&#xff08;3&#xff09;运行时使用动态库 2.编译静态链接库&#xff08;1&#xff09;编译静态库&#xff08;2&#xff09;链接静态库&#xff08;3&#xff09;运行时使…

matlab学习007-已知离散时间系统的系统函数并使用matlab绘制该系统的零极点图;判断系统的稳定性;幅频和相频特性曲线

目录 题目 离散时间系统的系统函数&#xff1a;H(z)(3*z^3-5*z^210z)/(z^3-3*z^27*z-5) 1&#xff0c;绘制该系统的零极点图 1&#xff09;零极点图 2&#xff09;代码 2&#xff0c;判断系统的稳定性 1&#xff09;判断结果 2&#xff09;代码 3&#xff0c;试用MATL…

C++的未来之路:探索与突破

在计算机科学的浩瀚星空中&#xff0c;C无疑是一颗璀璨的明星。自诞生以来&#xff0c;它以其强大的性能和灵活的特性&#xff0c;赢得了无数开发者的青睐。然而&#xff0c;随着技术的不断进步和应用的日益复杂&#xff0c;C也面临着前所未有的挑战和机遇。本文将探讨C的未来之…

腾锐D2000-8 MXM VPX,全国产,可广泛应用于边缘计算网关、入侵检测、VPN、网络监控等等应用领域

腾锐D2000-8 MXM VPX 1. 概述 XMVPX-108 是一款基于飞腾 D2000/8 处理器的低功耗逻辑运算和图形处理 VPX 刀片&#xff0c; 板贴 32GB DDR4 内存&#xff0c;搭载飞腾 X100 套片&#xff0c;满足通用 IO 接口功能。GPU 采用 MXM 小型插卡形式&#xff0c; 搭配 8GB 显卡。提供…

【16-降维技术:PCA与LDA在Scikit-learn中的应用】

文章目录 前言主成分分析(PCA)原理简介Scikit-learn中的PCA实现应用示例线性判别分析(LDA)原理简介Scikit-learn中的LDA实现应用示例总结前言 降维是机器学习中一种常见的数据预处理方法,旨在减少数据集的特征数量,同时尽量保留原始数据集的重要信息。这不仅有助于减少计…

开箱子咸鱼之王H5游戏源码_内购修复优化_附带APK完美运营无bug最终版__GM总运营后台_附带安卓版本

内容目录 一、详细介绍二、效果展示2.效果图展示 三、学习资料下载 一、详细介绍 1.包括原生打包APK&#xff0c;资源全部APK本地化&#xff0c;基本上不跑服务器宽带 2.优化后端&#xff0c;基本上不再一直跑内存&#xff0c;不炸服响应快&#xff01; 3.优化前端&#xff0c…

【源码阅读】Golang中的go-sql-driver库源码探究

文章目录 前言一、go-sql-driver/mysql1、驱动注册&#xff1a;sql.Register2、驱动实现&#xff1a;MysqlDriver3、RegisterDialContext 二、总结 前言 在上篇文章中我们知道&#xff0c;database/sql只是提供了驱动相关的接口&#xff0c;并没有相关的具体实现&#xff0c;具…

NLP 笔记:TF-IDF

TF-IDF&#xff08;Term Frequency-Inverse Document Frequency&#xff0c;词频-逆文档频率&#xff09;是一种用于信息检索和文本挖掘的统计方法&#xff0c;用来评估一个词在一组文档中的重要性。TF-IDF的基本思想是&#xff0c;如果某个词在一篇文档中出现频率高&#xff0…

不坑盒子2024.0501版,Word朗读、Word表格计算、Word中代码高亮显示行号、Excel中正则提取内容……

通过“听”来审阅Word中的内容&#xff0c;能轻松找出那些容易被眼看忽视的错字。 不坑盒子2024.0501版来了&#xff0c;很多奇妙的事情&#xff0c;正在发生…… 功能一览 此版本共带来10余项变动&#xff0c;来看看有没有你感兴趣的吧~ 接入Azure的“语音”能力 接入“语…

Flutter笔记:Widgets Easier组件库(3)使用按钮组件

Flutter笔记 Widgets Easier组件库&#xff08;3&#xff09;&#xff1a;使用按钮组件 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddre…

C语言之详细讲解文件操作(抓住文件操作的奥秘)

什么是文件 与普通文件载体不同&#xff0c;文件是以硬盘为载体存储在计算机上的信息集合&#xff0c;文件可以是文本文档、图片、程序等等。文件通常具有点三个字母的文件扩展名&#xff0c;用于指示文件类型&#xff08;例如&#xff0c;图片文件常常以KPEG格式保存并且文件…

JDBC连接MySQL8 SSL

1.创建用户并指定ssl连接 grant all on . to test% identified by imooc require SSL(X509); 2.查看是否使用ssl SELECT ssl_type From mysql.user Where user"test" 3.配置用户必须使用ssl ALTER USER test% REQUIRE SSL(X509); FLUSH PRIVILEGES; 注意&#xff…

Ollamallama

Olllama 直接下载ollama程序&#xff0c;安装后可在cmd里直接运行大模型&#xff1b; llama 3 meta 开源的最新llama大模型&#xff1b; 下载运行 1 ollama ollama run llama3 2 github 下载仓库&#xff0c;需要linux环境&#xff0c;windows可使用wsl&#xff1b; 接…

mac如何打开exe文件?如何mac运行exe文件 如何在Mac上打开/修复/恢复DMG文件

在macOS系统中&#xff0c;无法直接运行Windows系统中的.exe文件&#xff0c;因为macOS和Windows使用的是不同的操作系统。然而&#xff0c;有时我们仍然需要运行.exe文件&#xff0c;比如某些软件只有Windows版本&#xff0c;或者我们需要在macOS系统中运行Windows程序。 虽然…

【MATLAB源码-第200期】基于matlab的鸡群优化算法(CSO)机器人栅格路径规划,输出做短路径图和适应度曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 鸡群优化算法&#xff08;Chicken Swarm Optimization&#xff0c;简称CSO&#xff09;是一种启发式搜索算法&#xff0c;它的设计灵感来源于鸡群的社会行为。这种算法由Xian-bing Meng等人于2014年提出&#xff0c;旨在解决…

STM32 工程移植 LVGL:一步一步完成

STM32 工程移植 LVGL&#xff1a;一步一步完成 LVGL&#xff0c;作为一款强大且灵活的开源图形库&#xff0c;专为嵌入式系统GUI设计而生&#xff0c;极大地简化了开发者在创建美观用户界面时的工作。作为一名初学者&#xff0c;小编正逐步深入探索LVGL的奥秘&#xff0c;并决…

Java面试八股之强软弱虚引用的概念及区别

Java中强软弱虚引用的概念及区别 在Java中&#xff0c;强引用、软引用、弱引用和虚引用是四种不同类型的引用&#xff0c;它们在对象生命周期管理、垃圾收集&#xff08;Garbage Collection, GC&#xff09;以及内存管理方面有着不同的行为和用途。以下是它们的概念和主要区别…
最新文章